Brief information about the project

Name of the project	AP19679683 «Development of technology for production of
runne or the project	hydrogels based on modified polysaccharides with protective-
	stimulating compositions for seed coating»
Relevance	Humanity is currently facing environmental issues due to the
	lack of water in arid areas and the increase in the consumption of
	synthetic products. More than half of the planet's land is in arid
	regions, and the lack of water has a negative impact on agriculture
	in countries in these regions. In order to solve these problems,
	there are increasing interest in ways of covering and coating the
	seeds sown in the field. Seed coating is the process of applying
	specially studied exogenous materials to the natural seed surface.
	This practice is used to modify the physical properties of the seed
	and deliver the active ingredients. Physical seed modification aims
	to improve seed handling by standardizing seed mass and size. In
	some cases, changing seed morphology is not important when the
	goal is to reduce friction and improve flowability, but for small
	(e.g. plants like begonia or tobacco), expensive, or irregularly
	shaped seeds, thick coating is often used. Artificial coating is
	widely used as a carrier for various active ingredients.
	The usage of environmentally friendly plant protection
	agents and growth stimulants in agricultural production is
	becoming more and more relevant today. One of the most effective
	methods of protecting plants is the method of inducing their
	resistance to adverse external conditions and diseases. In this
	context, chitosan (X), starch (Kr) and its derivatives, which belong
	to the group of natural polysaccharides, are a particularly
	promising group as biogenic stimulators. In agriculture, they are
	used as a natural seed treatment and plant growth accelerator, and
	as an environmentally friendly biopesticide that increases the
	protective properties of plants against fungal infections.
	Since rapeseed and sugar beet are small-seeded crops, they
	cause significant difficulties during sowing. Therefore, it is
	promising to cover seeds with polymer hydrogels that retain a
	certain amount of water in order to protect plant growth, especially
	before the appearance of its leaves, from various "stress
	conditions" such as undecomposed plant residues in the soil,
	moisture stagnation, drought and other negative conditions.
Purpose	The project goal is development of technology for obtaining
	biodegradable hydrogels with protective-stimulating components
	based on modified polysaccharides to cover sugar beet, tomato
	and rape in technical and vegetable crops.
Objectives	Radiation irradiation of starch to obtain polymer hydrogel using
	electron accelerator ELV 4; production of polymer hydrogels with
	protective-stimulating components based on derivatives of
	modified starch and chitosan, polyvinyl alcohol, acrylic
	monomers; study of their physico-chemical and physico-
	mechanical properties with modern methods; in laboratory
	conditions, various factors, i.e. degree of hydrogel swelling,
	thickness of seed layer covered with polymer composite, etc. to
	study the influence of seed microflora suppression, seed quality,
	seed germination, ease of sowing, viability and productivity of

	seedlings, and to create optimal favorable conditions for seed
	coating technology; conducting field tests for pelleted seeds in the
	experimental fields of Almaty region, evaluating the growth trend;
	Obtaining the act of introduction and patent of the technology
	developed for the granulation seeds coated with hydrogels with
	protective-stimulating components.
Expected and achieved	1. The optimal starch processing conditions on an electronic
results	accelerator will be determined;
	Achieved results: In the presented work, potato starch was taken
	as the object of research, and the modification of the
	polysaccharide was carried out at the ELV-4 (or ULU-10)
	installation at the Institute of Nuclear Physics located in the

Achieved results: In the presented work, potato starch was taken as the object of research, and the modification of the polysaccharide was carried out at the ELV-4 (or ULU-10) installation at the Institute of Nuclear Physics located in the Almaty region. To modify starch, it was subjected to radiation treatment in the range of 10-70 kg. As a result of the research, it was found that starch irradiated at a dose of 70 kg has a higher solubility in distilled water.

2. On the basis of modified starch and hydrophilic polymers, hydrogels of a mesh structure will be obtained and the patterns of their formation will be investigated.

<u>Results achieved:</u> In the work, polymers of a mesh structure, i.e. hydrogels, based on modified starch (MCr) and: carboxymethylcellulose (CMC); chitosan; acrylamide (AA); acrylic acid (AK) were obtained. The patterns of hydrogel formation have been studied with varying initial polymer ratios, polymer concentration, and crosslinking agent concentration; solgel analysis of synthesized crosslinking samples has been performed.

- 3. The physico-chemical and physico-mechanical properties of the obtained hydrogels will be characterized.
- 4. Optimal technologies for grazing various seeds will be developed to obtain optimal coatings with protective and growth-stimulating properties.
- 5. Seed growth in laboratory and field conditions will be studied.

Research team members with their identifiers (Scopus Author ID, Researcher ID, ORCID, if available) and links to relevant profiles

1. Rakhmetullaeva Raikhan Kulymbetovna

Hirsch Index h=4

Scopus ID: <u>55903710100</u> ORCID: 0000-0003-1002-2046 Researcher ID: ABB-8540-2020

2. Irmukhametova Galiya Serikbaevna

Hirsch Index h=7

Scopus ID: 22979722000 ORCID: 0000-0002-1264-7974

3. Urkimbayeva Perizat Ibragimovna

Hirsch Index h=3 Scopus ID: 6508358809

ORCID: 0000-0001-7775-0238

4. Toktabayeva Asel Kyrgyzbayevna

4. Tuktabayeva Asei Kyigyzbayev

Hirsch Index h=2

Scopus ID: 57195074504 ORCID: 0000-0002-1313-8696

	5. Kenessova Zarina Anvarovna
	Hirsch Index h=2
	Scopus ID: 57211661197
	ORCID: 0000-0003-2768-824X
	Researcher ID: C-6788-2016
List of publications with	
links to them	
Patents	

Rakhmatullayeva Raykhan Kalymbetova

Urkimbayeva Perizat Ibragimovna

Toktabayeva Asel Kyrgyzbayevna

Kenesova Zarina Anvarovna

Laboratory analytical scales AS 310.R2 RADWAG

Melting Point Meter M5000

Discussion of the device operation

Business trip and conference in Astana

Rakhmetullayeva R.K. during the international symposium "Green Energy Materials Science" (Astana)

Havilkhairat Botagoz during a business trip to Nazarbayev University (Astana)